CRITICAL QUESTIONS FOR BIG DATA

By danah boyd&Kate Crawford

Presented by Tomek Strzałkowski
Introduction: Importance of Big Data

- Notable because of relationality to other data
 - patterns derived from pieces of data
 - networked-individual, groups
- Analytic phenomenon in academia and industry
 - seeing patterns in data
 - find out about research methodology, technology used
- Culminates multiple disciplines
- Current decisions will have impact on future
Introduction

- Central questions of computational culture of big data are fundamental to Social and cultural researchers
- Addresses 6 provocations
Automating Research changes the definition of knowledge

- Big data creates a radical shift in how we think about research
- A profound change at the level of ethics and epistemology but not just a matter of scale or depth of data
- Reframes key questions:
 - constitution of knowledge
 - processes of research
 - engagement with information
 - nature and categorization of reality
- ex: correlation with Henry Ford devising automation and assembly lines of manufacturing
Automating Research changes the definition of knowledge

- **Do massive numbers speak for themselves? NO.**
 - Why people do things, write things is erased by sheer volume of numerical repetitions and large patterns
 - No space for older forms of intellectual craft
- **Realize the limitations attached to Big Data**
 - No historical context that is predictive and focuses on right now or immediate past
- **Automation of tasks requires consideration of inbuilt flaws**
Claims to objectivity and accuracy are misleading

- Big data is subjective and what it quantifies is not closer to objective truth
- Reinscribes established divisions in the debates of scientific method
 - Scientific methods develop hypothesis (objective) which are necessarily made by subjects based on subjective observation and choices
 - ex: data cleaning from social media is inherently subjective
Claims to objectivity and accuracy are misleading

- **Issue of data errors**
 - Understanding of properties and limits of datasets necessary
 - Social scientists carefully collect data and account for biases in it
 - To account for biases in data requires recognizing that one’s identity and perspective informs one’s analysis
 - ex: Dunbar’s work of analyzing gossips in humans lead to wrong results

- **Interpretation center of data analysis**
Bigger data are not always better data

● Problematic underlying ethos: Quantity means quality, bigger the data the better
● Twitter provides an example in context of statistical analysis
 ○ Twitter does not represent the whole population
 ○ Meaning of user, participant and listener needs to be examined
 ○ no track of multiple accounts, lurkers
● Access to Twitter dataset through APIs varies
 ○ firehose: all public tweets except ones made private
 ○ spitzer: 1% of public account
 ○ gardenhose: 10% of public tweets
 ○ white-lists: different subsets of data
Bigger data are not always better data

- Limitations with data collection rarely acknowledged
 - Big data not whole data
 - Results of data collection do not reveal biases associated
 - Twitter data has methodological challenges rarely addressed

- Important to recognize value of small data
 - ex: work of Tiffany Veinot on a vault inspector to understand information practices of blue-collar worker
 - reframed definition of informal practices away from white-collar workers and spaces outside offices
Not all data are equivalent

- Context of data matters
- Two datasets modeled similarly does not make them equivalent
 - equating social media analysis with social graphs and social network analysis
 - not interchangeable
 - does not capture social relations
- Social science uses diverse methodological and analytical approaches
 - collection of data through surveys, interviews, observations and experiments
 - developed personal networks-relationship an individual develops and maintains
 - articulated and behavioral network not equivalent to personal network
Not all data are equivalent

- Measurement of tie strength through frequency or public articulation erroneous
- Risk in treating every connection as equivalent to other
Just because it is accessible Doesn’t make it ethical

• What constitutes best ethical practice for researchers?
 ○ ex: Harvard based project released Facebook data publicly which was easily able to de-anonymize identities
• Researchers unaware of the harm
 ○ educational intervention seeking to discourage people from suicide increased in attempts
• Institutional Review Boards (IRBs)
 ○ framework for evaluating ethics of particular line of research
 ○ balances and checks in place to protect the subjects
Just because it is accessible Doesn’t make it ethical

- Accountability
 - of research being done and research subjects required
 - multi-directional relationship
 - relation to colleagues, superiors, participants, public
- Researchers are provided with tools to breach privacy
- Subjects unaware of the agents and algorithms collecting data
Limited access to Big Data creates new digital divides

- Gap exists in the level of access people have to data
 - ex: social media companies have full access compared to outsiders
 - considerable unevenness in the system
 - Well-resourced universities buy access to data compared to others
- Gap based on skillset
- Gap based on gender
- Digital divide: Big data poor and Big data rich
Conclusion

- Important to start questioning about the assumptions, values, biases, methodologies associated with Big Data
- Current decisions will have an impact on future
Discussion: Questions to be addressed in class

- Under what circumstance is small data better than big data?
Discussion: Questions to be addressed in class

- Can any measures be taken to minimize (if not avoid) bias and subjectivity while working with big data?
Discussion: Questions to be addressed in class

- How much exactly the negative impacts of the new methods of Big data extraction outweigh the constructive results or is it the other way around??
Discussion: Questions to be addressed in class

- As the big data not representing everyone’s opinion or behavior. How much accurate information we can retrieve using that kind of data?
Discussion: Questions to be addressed in class

- What are the (ethical) limits of collecting user data from the social services and applications?
Discussion: Questions to be addressed in class

- Are privacy laws too strict or too relaxed?
Discussion: Questions to be addressed in class

- Making Big Data “open” will solve the problem where only a limited number of researchers have access to it, or different problems could emerge?
Discussion: Questions to be addressed in class

- How do one define accountability to the research subjects?
Discussion: Questions to be addressed in class

- Is it sometimes necessary to let go privacy of data for a greater good? (eg. surveillance systems that detect terrorist activities)
Thank you!